Solutions for Exam Physics Laboratory 1: Data and error analysis 25 November 2013

Exercise 1 (4 points total)
a) $T=312.7 \pm 0.3 \mathrm{~K}=(312.7 \pm 0.3) \cdot 10^{3} \mathrm{mK}$ (1 point)
b) $\lambda=1.06 \pm 0.01 \mu \mathrm{~m}=(1.06 \pm 0.01) \cdot 10^{3} \mathrm{~nm}$ (1 point)
c) $R=47.00 \pm 0.04 \mathrm{k} \Omega=(47.00 \pm 0.04) \cdot 10^{3} \Omega$ (1 point)
d) $p=101.30 \pm 0.02 \mathrm{kPa}=(101.30 \pm 0.02) \cdot 10^{3} \mathrm{~Pa}$ (1 point)

Exercise 2 (5 points total)

a) $v=\sqrt{\frac{5 p}{3 \rho}}=\sqrt{\frac{5 \cdot 1.01}{3 \cdot 1.21}}=1.1795 \mathrm{~m} / \mathrm{s}$ (intermediate result, keep more decimals). (1 point) Note: the speed of sound is very low, because the pressure is very low; at atmospheric pressure $v \approx 300 \mathrm{~m} / \mathrm{s}$.
b) substitute $z=5 p / 3 \rho$, then $v=\sqrt{z}$ and

$$
\left(\frac{\Delta z}{z}\right)^{2}=\left(\frac{\Delta p}{p}\right)^{2}+\left(\frac{\Delta \rho}{\rho}\right)^{2}
$$

so

$$
\frac{\Delta v}{v}=\frac{1}{2}\left(\frac{\Delta z}{z}\right) \Rightarrow\left(\frac{\Delta v}{v}\right)^{2}=\left(\frac{1}{2}\right)^{2}\left(\frac{\Delta z}{z}\right)^{2}=\left(\frac{1}{2}\right)^{2}\left[\left(\frac{\Delta p}{p}\right)^{2}+\left(\frac{\Delta \rho}{\rho}\right)^{2}\right]
$$

Method of partial derivatives yields same formula (of course). (2 points for correct formula)
$\Rightarrow \Delta v / v=0.009634 \approx 1 \% \Rightarrow \Delta v=0.0114 \approx 0.02 \mathrm{~m} / \mathrm{s}$ (1 point for correct values)
c) $v=1.1795 \pm 0.02 \mathrm{~m} / \mathrm{s}$. (1 point)

Exercise 3 (9 points total)
a)

$$
\begin{aligned}
w_{1}=\frac{1}{s_{1}^{2}} & =\frac{1}{0.3^{2}}=11.1111 \text { and } w_{2}=\frac{1}{s_{2}^{2}}=\frac{1}{0.6^{2}}=2.7778 \text { (1 point) } \\
M & =\frac{w_{1} M_{1}+w_{2} M_{2}}{w_{1}+w_{2}}=\frac{11.1111 \cdot 18.9+2.7778 \cdot 19.3}{11.1111+2.7778}=18.98 \mathrm{~kg}
\end{aligned}
$$

(1 point)
b)

$$
\begin{aligned}
& \frac{1}{s_{M}^{2}}=\frac{1}{s_{1}^{2}}+\frac{1}{s_{2}^{2}}=w_{1}+w_{2}=11.1111+2.7778=13.89 \\
& \quad \Rightarrow s_{L}=13.89^{-1 / 2}=0.2683 \mathrm{~kg}=\Delta M \quad(2 \text { points })
\end{aligned}
$$

In the correct notation: $M \pm \Delta M=19.0 \pm 0.3 \mathrm{~kg}$.
c) use standard normal distribution with $z=(x-\mu) / \sigma=(18.8-19.0) / 0.3=$ $-0.2 / 0.3 \approx-0.667 \approx-0.7$, therefore probability $P=\int_{-\infty}^{-0.7} N(y) d y=\int_{0.7}^{\infty} N(y) d y=$ $\frac{1}{2}-\int_{0}^{0.7} N(y) d y \approx \frac{1}{2}-0.2580=0.2420$ so $P=24 \%$. (1 point for correct method, 1 point for correct numbers)
d) $z_{1}=(19.1-19.0) / 0.3=0.1 / 0.3 \approx 0.333 \approx 0.3$ and $z_{2}=(19.2-19.0) / 0.3=$ $0.2 / 0.3 \approx 0.667 \approx 0.7$, therefore probability $P=\int_{z_{1}}^{z_{2}} N(y) d y=\int_{0}^{z_{2}} N(y) d y-$ $\int_{0}^{z_{1}} N(y) d y=0.2580-0.1179=0.1401$ so $P=14 \%$. (2 points for correct method, 1 point for correct numbers)

Exercise 4 (6 points total)
(it is of course the period of a pendulum, not the resistance)
a) $\bar{t}=(1 / 5) \cdot(6.17+6.13+6.23+6.11+6.16)=6.16 \mathrm{~s}$. (2 points)
b) $N=5 ; s^{2}=\frac{1}{N-1} \sum_{i=1}^{5}\left(t_{i}-\bar{t}\right)^{2}=\frac{1}{4}\left((0.01)^{2}+(-0.03)^{2}+0.07^{2}+(-0.05)^{2}+0^{2}\right)=$ $0.0021 \Rightarrow \sigma=s=\sqrt{0.0021}=0.0458 \approx 0.05 \mathrm{~s}$. (2 points)
c) $s_{m}=s / \sqrt{N}=0.0458 / \sqrt{5}=0.0205 \approx 0.02 \mathrm{~s}$ or $\approx 0.03 \mathrm{~s}$ if rounded off upwards. (2 points)

Exercise 5 (12 points total)

T has the role of x, R the role of y, α the role of a and R_{0} the role of b in $y=a x+b$; $r=$ residual.

$T\left({ }^{\circ} \mathrm{C}\right)$	$R(\Omega)$	$r(\Omega)$
-50.0	80.3	0.1200
-40.0	84.0	-0.1800
-30.0	88.3	0.1200
-20.0	92.0	-0.1800
-10.0	96.3	0.1200

$$
\begin{gathered}
a=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
(\Delta a)^{2}=\left(\frac{1}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2}
\end{gathered}
$$

$$
(\Delta b)^{2}=\left(\frac{1}{N}+\frac{\bar{x}^{2}}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} .
$$

a) $N=5, \sum T_{i}=-150, \sum R_{i}=440.9, \sum T_{i}^{2}=5500, \sum T_{i} R_{i}=-12827$
$\Rightarrow \alpha=(5 \cdot-12827-(-150) \cdot 440.9) /\left(5 \cdot 5500-\{-150\}^{2}\right)=0.4 \Omega /{ }^{\circ} \mathrm{C}$
and $\bar{T}=-30, \bar{R}=88.18 \Rightarrow R_{0}=\bar{R}-\alpha \bar{T}=100.18 \Omega$. (2 points; $\frac{1}{2}$ point less if no units)
b) $\sum r_{i}^{2}=0.108 \Rightarrow(\Delta \alpha)^{2}=\left(5500-5 \cdot(-30)^{2}\right)^{-1} \cdot(0.108 /\{5-2\})=3.6 \cdot 10^{-5}$ $\Rightarrow \Delta \alpha=0.006 \Omega /{ }^{\circ} \mathrm{C}$
and $\left(\Delta R_{0}\right)^{2}=\left(1 / 5+(-30)^{2} /\left\{5500-5 \cdot(-30)^{2}\right\}\right) \cdot(0.108 /\{5-2\})=0.0396$
$\Rightarrow \Delta R_{0}=0.199 \approx 0.2 \Omega$. (2 points; $\frac{1}{2}$ point less if no units)
c) $T=-25.5^{\circ} \mathrm{C}$ so $R=R_{0}+\alpha T=100.18+0.4 \cdot(-25.5)=89.98 \Omega$. (1 point) Substitute $z=\alpha T$, then $(\Delta R)^{2}=\left(\Delta R_{0}\right)^{2}+(\Delta z)^{2}$ and

$$
\begin{gathered}
\left(\frac{\Delta z}{z}\right)^{2}=\left(\frac{\Delta \alpha}{\alpha}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2} \Rightarrow(\Delta R)^{2}=\left(\Delta R_{0}\right)^{2}+(\alpha T)^{2}\left[\left(\frac{\Delta \alpha}{\alpha}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2}\right]= \\
\left(\Delta R_{0}\right)^{2}+(T \Delta \alpha)^{2}+(\alpha \Delta T)^{2}= \\
(0.2)^{2}+(0.4 \cdot-25.5)^{2}\left[\left(\frac{0.006}{0.4}\right)^{2}+\left(\frac{0.1}{-25.5}\right)^{2}\right]=0.0650 \Rightarrow \Delta R=0.255 \approx 0.3 \Omega
\end{gathered}
$$

(2 points for correct formula; method of partial derivatives yields same result) so $R=90.0 \pm 0.3 \Omega$ at $T=-25.5^{\circ} \mathrm{C}$. ($\frac{1}{2}$ point for correct values and $\frac{1}{2}$ point for correct notation)
d) $\chi_{o b s}^{2}=\sum\left\{r_{i}^{2} /(\Delta R)^{2}\right\}=0.0823 /(0.5)^{2}=0.329$. (2 points)
e) Three parameters p, q, w are needed for the parabolic fit, so there are $\nu=N-3=$ $5-3=2$ degrees of freedom. From the table: 10% level $\Rightarrow \chi_{\text {table }}^{2}=0.211,90 \%$ level $\Rightarrow \chi_{\text {table }}^{2}=4.605$. Since $\chi_{\text {obs }}^{2}$ is in between those two limits, the parabolic fit is acceptable. (2 points; if wrong ν but otherwise correct: 1 point less; if wrong values read from tables, but otherwise correct: 1 point less)

Exam grade $=($ total of points $) / 4+1$

